1. はじめに

推進工法では,全ての推進管が掘進機とともに前 進することになるので,掘進メカニズムを解明する ためには,掘進機と全ての推進管からなる管路の全 体系を考慮することが必要となる.

上記を踏まえて,管路の全体系を対象として,地 盤と推進管の相互作用を考慮に入れた推進メカニズ ムを理論的に表現できる管路解析モデルを開発して きた.しかし,上記管路解析モデルのうち,新たに 開発した曲げ剛性を有する推進管継手モデルは,実 測データを用いて検証されていない.そこで,本研 究では,推進管の継手曲げ実大実験により,直線・ 曲線推進時に推進力伝達材が推進管に与える影響を 解明し,さらに実験結果に基づき,管路解析モデル を用いて,推進管継手モデルの妥当性を検証するこ とを目的とする.本報告では,これらの内,推進管 に発生する軸方向ひずみについて述べる.

2. 実験概要

本実験では,実大の推進管2本を推進力伝達材を 介して接合し,軸方向に載荷を行うことにより,曲 線部・直線部において,推進力が推進力伝達材を介 して伝達されるときの,推進管に発生するひずみ・ 応力・断面力,推進管の変形,および,隣接する推 進管の相対的な変位を把握する.

(1) 実験設備

長手方向 13m,短手方向 4m,深さ 2m のピットの 中に,反力 BOX2 個,推進管架台を設置した後,そ の架台の上に推進力伝達材を介して推進管 2本,そ の側方にコンクリート製の側方反力体4個を設置し, それらを,推進管軸方向は上下 2本のジャッキ(最 大載荷荷重 1.5MN / 本)で,推進管横断方向は左右 4本ずつ合計 8本のジャッキ(最大載荷荷重 200kN /本)で支持した.その後,左右4本ずつ合計8本 の PC 鋼棒で,反力 BOX 間隔を固定した.

推進力伝達材は,発泡倍率2倍の発泡スチロール 製で,推進管の接合部には厚さ10mmの推進力伝達 材を4枚重ねて,推進管の両端部には厚さ10mmの 推進力伝達材1枚を,それぞれ上下90°ずつの範囲 に設置した.

(2) 計測項目

計測項目を表-1 に示す.推進管に発生するひず み・応力・断面力を把握するため,推進管に発生す るひずみを計測した.推進力伝達材が継手部の上下 90。ずつの範囲にのみ設置されていること,曲線部 では曲線内側の推進力伝達材に応力集中が発生する と考えられることから,接合部近傍,曲線内側を重 点的に計測した.

(3) 実験ケース

実験ケースを表-2 に示す.推進力が継手を介して 伝達されるときの,推進管に対する影響を曲線部と 直線部で比較するため,推進管が曲線部と直線部に ある状態を想定して,実験ケースを設定した.曲線

長岡技術科学大学 地盤工学研究室 灌瀬 真輝 指導教員 杉本 光隆

の曲げ角度は,本実験で使用した推進管の開口差から定まる最大曲げ角度(曲線半径 38.6m に相当)とした.

(4) 実験方法

Case1(曲線)では,推進力伝達材の特性から規定 される推進管の許容推進力をもとに 1000kN まで, Case 2(直線)では,推進管の許容推進力の90%にあ たる 2700kN まで,載荷することとし,載荷・除荷を 2 度繰り返した.

3. 解析概要

(1) 推進力算定モデル

図-1 に解析モデルを示す.解析では,推進管を半 径方向28本の地盤ばねによって支えられるシェル, 推進管継手部を圧縮ばねとせん断ばね,先端抵抗を 圧縮ばねとせん断ばねとしてモデル化した.なお, 推進管は左右から側方反力体によって支えられ,推 進管架台によって設置されているため,上部は地盤 ばねを解放した.

(2) 解析条件

推進管は管長 L=2.43m 呼び径 800mm 厚さ 80mm である. 解析ケースは,実験ケース同様に,Case1, Case2 に対して行った.

4. 実験結果と解析結果の比較および検討

Casel の軸方向ひずみ分布の実験結果および解析 結果を図-2 に示す.ここで,-を圧縮,+を引張と する.図-2 から以下のことがわかる. 表-1 計測項目

	計測項目	計測方法	点数	
А	荷重	軸方向	荷重計	2
В		側方	荷重計	8
С	· 推進管 ·	角度	トランシット	
D		継手間隔	変位計	4
Е		ひずみ	ひずみゲージ	352
F		たわみ	レーザー変位計	12
G	側方反力体	変位	変位計	16
Η	PC 鋼棒	ひずみ	ひずみゲージ	16
合計				

衣-2 天殿フース

Case	線形	曲げ角度
1	曲線	3.61 °
2	直線	0.00 °

図-1 解析モデル(右:断面図)

実験結果と解析結果が以下に示す1)~4)で同様の 傾向を示すことがわかる.

1) 接合部近傍の a 断面では,曲線内側の推進力伝達材 が設置されている範囲(165-180,0-45 度)で大きく, 157.5,22.5 度で上下それぞれの最大値を取り,曲線 外側の推進力伝達材が設置されていない位置(270度) で最小値を取る。

2) 接合部から離れるにしたがい,曲線内側の軸方向 ひずみの集中は,若干緩和され,推進力伝達材が設 置されていない範囲でひずみが若干増加する.

3) 接合部と反対側の推進管端部の e 断面では再び, 推進力伝達材の設置範囲で軸方向ひずみが大きくな る.

4)実験結果では接合部近傍のa断面よりb断面の方 が,軸方向ひずみが大きくなっている.これは a 断 面が埋込カラーの内側にあるため,鋼製の埋込カラ ーがコンクリートの軸方向ひずみを抑制しているた めと考えられる.

5)実験結果では,推進力伝達材設置範囲において, 推進管軸方向に筋状の軸方向ひずみの発生が見られ るが,解析結果では,接合部近傍から離れていくに したがい,軸方向ひずみが分散している.これは, 実験では,推進管の両端において,厚さ1cmの推進 力伝達材を介して,推進力が載荷され,反力 BOX に 結合されているが,解析では,推進力を管端部に直 接載荷し,反力 BOX に剛結されているためである.

b 断面の推進力伝達材設置箇所およびそうでない 箇所に発生した最大・最小軸方向ひずみの実験結果 と解析結果を図-3 に示す.図-3 から以下のことがわ かる.

1)推進管 の推進力伝達材設置範囲で軸方向ひずみ が実測値よりも解析値が大きいことを除けば,軸方 向ひずみは実験結果と解析結果でほぼ一致している.

これは前に述べたように,実験と解析の両端部の境 界条件の違いのためと考えられる.

結論 5.

管路解析モデルを用いて軸方向ひずみの傾向を適 切に再現できることから,推進管継手モデルの妥当 性を確認できた.

参考文献

1) 藤井良大, 杉本光隆, Aphichat Sramoon: 推進工 法の推力算定に関する研究,第59回土木学会年次学 術講演会講演概要集, - 382 , 2004

2) Auttakit Asanprakit, 潘少雄, 杉本光隆, 望月崇: 実測データによる推進工法の推力算定モデルの検証, 第63回土木学会年次学術講演会講演概要集 298, 2008.

3) 品田悟, Auttakit Asanprakit, 伊藤隼人, 杉本光隆: 管路解析モデルによる余掘りが推進力・推進管作用 土圧に与える影響評価,第64回土木学会年次学術講 演会講演概要集, - 426, 2009. 4)桜井俊裕, 杉本光隆, 中村勝則, 陳剣, Le Gia Lam:

推進管の継手曲げ実大実験による推進力伝達材が推 進管に与える影響の検討、トンネル工学報告集、土 木学会, Vol.20, pp.387-393.2010

図-2 推進管内面の軸方向ひずみ分布 (Case 1,曲線,載荷荷重 1,000kN)