要素実験によるミックスシールドのチャンバー圧・液面制御に関する研究

長岡技術科学大学 地盤工学研究室 大森 絵美

指導教官 杉本 光隆

1. はじめに

近年,従来の泥水による制御に加えてカッター チャンバーの坑内側にもう一つのエアーチャンバ ーを設け,この上部にエアーを導入して空気層を 形成し,この空気圧を制御することにより,泥水 式シールドの切羽水圧の安定をより高度に制御す る方式が採用されつつある.

この空気圧制御併用の方式は,空気圧の制御と 送・排泥流量による液面高さの制御により,地山 側の圧力変動による切羽水圧の変動を空気の圧縮 性を利用してより緩和しようとするものである.

研究の目的

本研究では,実験により空気併用方式の特徴・ 制御方法を把握し,空気併用方式の実機への適用 を図ることを目的とする.

3.実験条件

3.1 実験装置と実験の概略

本実験の位置づけは、小口径の泥水式シールド を想定した実大実験とする.本実験で得られた空 気併用方式の特徴・制御方法は定式化できるので、 大口径の泥水式シールドにも適用可能と考えられ る.また、泥水式シールドにおける従来方式の切 羽圧管理方法は確立していること、空気併用方式 による切羽圧管理の課題は送排気関係であること から、本実験では、泥水の替わりに水を用いるこ ととした.

実験装置は、泥水式シールドにおける切羽圧管 理として、従来方式と空気併用方式の両方を適用 できる仕様とした.図-1に実験装置フロー図を示 す.

3.2 実験因子

1) 制御方式

空気併用方式の空気圧の制御方法については, 送気・排気の流量,供給空気圧の設定,その制 御方法等,未知の部分が多い.そこで,従来方

図-1 実験装置フロー図

分類	項目	単位	Case1	Case2
検討	制御方式		従来方式	空気併用
				方式
ケース	送排気系	系統	—	1
	統			
	$\sigma_{\rm face}$	kPa	100	100
	$\sigma_{\rm air}$	kPa	_	200
地山崩壊	h_{\min}	mm		-103
(少量)	$h_{\rm max}$	mm		43
	$q_{ m in max}$	m ³ /min	0.403	0.391
	Min0	kPa	-54	-20
	Max0	kPa	11	10
地山崩壊	h_{\min}	mm		-264
(大量)	$h_{\rm max}$	mm		174
	$q_{ m in max}$	m ³ /min	0.502	0.579
	Min0	kPa	-69	-22
	Max0	kPa	39	17
閉塞	h_{\min}	mm	-	-40
キャビ・テーショ ン	$h_{\rm max}$	mm	-	62
	$q_{ m in max}$	m ³ /min	_	
	Min0	kPa	-26	-5
	Max0	kPa	30	9
最終	V_{q}	liter	110	209

表-1 実験結果

式と比較して,空気併用方式の特徴・制御方法 を明らか

にするため、制御方式を実験因子とした.

2) 想定事象

想定事象は、定常状態、地山崩壊(少量)、地山 崩壊(大量),閉塞キャビテーションの4つとした. ①定常状態は、切羽水圧一定を想定するとともに、 実現場と同様に、バイパス還流から切羽還流への 切替え,切羽還流からバイパス還流への切替えも 考慮することとした.

②地山崩壊(小量)は、切羽で地山が崩壊し、切 羽水圧 100kPa で、切羽水圧が 16.7kPa 程度減少す ることを想定した.

③地山崩壊(大量)は、切羽で地山が大きく崩壊し、切羽水圧 100kPa で、切羽水圧が 35~40kPa
 程度減少することを想定した.

④閉塞キャビテーション:排泥管が閉塞し,切羽 水圧が急上昇する場合を想定した.

3.3 実験ケース

本報告では、実験因子の想定事象として、「定常 状態→地山崩壊(少量)→地山崩壊(大量)→閉 塞キャビテーション→定常状態」を連続的に発生 させた従来方式(Case1)と空気併用方式(Case2)の2 ケースを示す.

4. 実験方法

1) 従来方式

従来方式は、メインチャンバーとエアーチャン バーを満水として、通常の泥水式シールドと同様 に、切羽水圧(メインチャンバー圧)(PT1)が所 定の圧力となるように送泥ポンプ(P1)の送泥流 量、排泥ポンプ(P2)の排泥流量を制御した.

2) 空気併用方式

空気併用方式は、メインチャンバーを満水とし、 エアーチャンバーの上半部をエアーで満たして、 切羽水圧(PT1)が所定の圧力となるように、送 気管のエアー減圧調整バルブ(RCV)を所定圧力 (切羽水圧)に設定し、送気管のエアー調整バル ブ(ACV)により送気量を制御した.さらに、液

面水位が所定の位置となるように送泥ポンプ (P1)の送泥流量を制御した.

5. 計測項目

1) **チャンバー関係**:メインチャンバー圧,エアー チャンバー圧,エアーチャンバー水位.(以後,メ インチャンバー圧をチャンバー圧,エアーチャン バー水位をチャンバー水位と呼ぶ)

2) 送排泥関係:送泥・排泥流量,送泥・排泥ポン

プの速度指令・電流・回転数・運転状況,バイパ スバルブの開指令・開閉状況

3) 送排気関係: コンプレッサー圧, レシーバタン ク圧

4) 地山崩壊, 閉塞キャビテーション: キャビテー ション発生バルブの開度・開閉状況, 放出水量. 放出水量は手動で, その他の計測項目は中央操作 盤に設置したデータロガーで自動計測した.

6. 実験結果

実験因子がチャンバー圧 $\sigma_{chamber}$ へ与える影響の メカニズムを検討するため、CCV開度、チャンバ ー圧 $\sigma_{chamber}$ 、供給空気圧 σ_{air} 、チャンバー水位 h、 P速度指令、P回転数、送排泥流量 q_{in} 、 q_{out} 、注入 水量 V_q の時系列データを図-2 に示す.また、チ ャンバー最低水位 h_{min} 、最高水位 h_{max} 、最大送泥 流量 q_{inmax} 、チャンバー最小圧変化 MinO、最大圧 変化 MaxO、最終注入水量 V_q を表-1 に示す.

6.1 従来方式

1) 地山崩壊

チャンバーから外部に排水が開始されると、2 秒遅れて、チャンバー圧 $\sigma_{chamber}$ が減少し出し、同 時に、送泥流量 q_{in} が増加を開始する.その後、安 定した制御がなされ、排泥が停止された後、 $\sigma_{chamber}$ が設定切羽水圧 σ_{face} に復するまでに要した時間は、 地山崩壊(少量)、(大量)で、それぞれ、6秒、5 秒であった.この後、 $\sigma_{chamber}$ が最大圧を示した後、 設定切羽水圧 σ_{face} に復した.この間、P1 速度指令 は 100%以下で、注入水量 V_q は合計 103 litter とな った.

2) 閉塞キャビテーション

チャンバーからの排泥流量 q_{out} が減少し始めて から、3 秒遅れて、チャンバー圧 $\sigma_{chamber}$ が増加し 出し、同時に、送泥流量 q_{in} 、排泥流量 q_{out} が減少 を開始する.その後、 q_{in} 、 q_{out} はともに 0.03m^3 /min となり、安定した制御がなされ、キャビテーショ ンが停止された後、 $\sigma_{chamber}$ が σ_{face} に復するまでに 要した時間は 2 秒であった。この後、 $\sigma_{chamber}$ が最 小圧を示した後、設定切羽水圧 σ_{face} に復した。こ の間, P1 速度指令は 100%以下で, P2 速度指令は 100%で, 注入水量 V_q は漸増し, 最終的には合計 110 litter となった. P2 速度指令 100%に対して, $q_{out} \approx 0$ となったのは, 排泥管のキャビテーション 発生バルブの開度を 15% として排泥管を閉塞した 結果, $q_{in}=0$ となった.

6.2 空気併用方式

1) 地山崩壊

①チャンバー水位: チャンバーから外部に排水が 開始されると、チャンバー水位が減少し、それに 伴い、送泥流量 q_{in} が急増し、注入水量 V_q が増加 する. この結果、チャンバー水位が増加に転ずる と、送泥流量 q_{in} は漸減し、チャンバー最高水位 >設定値となる. この後、送泥流量 $q_{in} < 排泥流量$ q_{out} となって、注入水量 V_q が減少し、緩やかにチ ャンバー水位は設定値に収束する. なお、地山崩 壊(大量)の場合には、P1 速度指令が 100%とな り、送泥流量 q_{in} は P1 ポンプの定格 0.6m³/min に 近づく.

②チャンバー圧:チャンバーから外部に排水が開始されると、チャンバー水位の減少に伴い、チャンバー圧 $\sigma_{chamber}$ も減少する.その後、送気により、 チャンバー水位<設定値で、 $\sigma_{chamber} = \sigma_{face}$ となった後、チャンバー水位の増加に伴い、チャンバー 圧最大値> σ_{face} となる.さらに、排気により、チャンバー水位>設定値で、 $\sigma_{chamber} = \sigma_{face}$ に収束する.

③供給空気圧(レシーバタンク圧):供給空気圧 σ_{air} は、チャンバー圧 $\sigma_{chamber}$ の減少に少し遅れて 減少し出し、 σ_{chambe} が増加に転じてから最小値を 取り、その後、設定供給空気圧 σ_{air} に復する.

2) 閉塞キャビテーション

①チャンバー水位:閉塞キャビテーション開始に より、チャンバー水位は増加するが、送泥流量 q_{in} が急減し、 $0 \Rightarrow 送泥流量 q_{in} < 排泥流量 q_{out}$ となっ て、注入水量 V_q が減少し、チャンバー水位は漸減 する.閉塞キャビテーション終了後、排泥流量 q_{out} =設定値となり、チャンバー水位は急減し、チャ ンバー水位<設定値となる.数秒後に,送泥流量 q_{in} が急増し,送泥流量 q_{in} >排泥流量 q_{out} となって, 注入水量 V_q が増加に転じ,チャンバー水位は設定 値に復する.

②チャンバーE:閉塞キャビテーション開始数秒 後に、チャンバーE $\sigma_{chamber}$ は最大値を取るが、す ぐに、 $\sigma_{chamber} \Rightarrow \sigma_{face}$ となり、閉塞キャビテーショ ン終了後、チャンバー水位が最小値を取る前に、 チャンバーE $\sigma_{chamber}$ は最小値を取る. その後、す ぐに、 $\sigma_{chamber} \Rightarrow \sigma_{face}$ となる.

6.3 従来方式と空気併用方式の比較

1)地山崩壊:従来方式より空気併用方式の方が、 チャンバー最小圧が大きく(最小圧偏差>0)、最 大圧は小さく(最大圧偏差<0)、その結果、チャンバー圧力差は小さく(圧力差偏差<0)なった.
この傾向は、地山崩壊(大量)の方が大きい.
2)閉塞キャビテーション:地山崩壊と同様に、従 来方式より空気併用方式の方がチャンバー最大圧 が小さく、最小圧は大きく、その結果、チャンバ ー圧力差は小さくなった.

7.考察

従来方式と空気併用方式のチャンバー圧制御メ カニズムは以下のように考えられる.

1) 地山崩壊

従来方式: チャンバーから外部に排水すると, 泥水の体積減少 ΔV に伴い, $\sigma_{chamber}$ が減少する. $\sigma_{chamber}$ 減少を検知し,送泥ポンプ P1 へ指令 (P1 速度指令)を出し, P1 の回転数 (P1 回転数)を 上げ,送泥流量 q_{in} を増加させる.その結果,注入 水量 V_q が増加する.これによって, $\sigma_{chamber}$ を増 加させ, $\sigma_{chamber}$ が σ_{face} に復するように制御する. 空気併用方式: チャンバーから外部に排水すると, 泥水の体積減少 ΔV に伴い,チャンバー水位 h が 低下する.これに伴い,エアーチャンバーの空気 が膨張し, $\sigma_{chamber}$ が減少する.h 低下を検知し, 送泥ポンプ P1 へ指令を出し,P1の回転数を上げ, 送泥流量 q_{in} を増加させる.その結果,注入水量 V_q が増加する.これによって,hを上昇させ,h が設定値に復するように制御する. $\sigma_{chamber}$ >設 定切羽水圧 σ_{face} となった場合には,排気流量が増 加し, $\sigma_{chamber} = \sigma_{face}$ に収束する.

2) 閉塞キャビテーション

従来方式:キャビテーションバルブ (CCV2) を所定の開度,設定時間で閉め,チャンバーから の排泥流量を減少させる.その結果, $\sigma_{chamber}$ が増 加すると,送泥ポンプ P1 へ指令を出し,P1 の回 転数を下げ,送泥流量 q_{in} を減少させるとともに, 排泥ポンプ P2 へ指令 (P2 速度指令)を出し,P2 の回転数 (P2 回転数) を上げ, 排泥流量 q_{out} を増加させる. これによって, $\sigma_{chamber}$ を減少させ, $\sigma_{chamber}$ が σ_{face} に復するように制御する.

空気併用方式:地山崩壊とほぼ同様.

8. まとめ

従来方式と空気併用方式による地山崩壊,閉塞 キャビテーションの制御メカニズムを明らかにす るとともに,従来方式より空気併用方式の方がチ ャンバー圧変動抑制効果が大きいことを確認した.

図-2 計測データの時系列変化